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The definitions and basic properties of eigenvalues and eigenvectors are given in Section 4.4.
A natural generalization is presented here in Section 56.1. Algorithms for computation of
eigenvalues, eigenvectors, and their generalizations will be discussed in Sections 56.2 and
56.3.

If a large fraction of a matrix’s entries are zeros, the matrix is called sparse. A matrix
that is not sparse is called dense. Dense matrix techniques are methods that store the
matrix in the conventional way, as an array, and operate on the array elements. Any matrix
that is not too big to fit into a computer’s main memory can be handled by dense matrix
techniques, regardless of whether the matrix is dense or not. However, since the time to
compute the eigenvalues of an n × n matrix by dense matrix techniques is proportional
to n3, the user may have to wait a while for the results if n is very large. Dense matrix
techniques do not exploit the zeros in a matrix and tend to destroy them. With modern
computers, dense matrix techniques can be applied to matrices of dimension up to 2000 or
more. If a matrix is very large and sparse, and only a portion of the spectrum is needed,
sparse matrix techniques (Section 56.3) are preferred.

The usual approach is to preprocess the matrix into Hessenberg form and then to effect
a similarity transformation to triangular form: T = S−1AS by an iterative method. This
yields the eigenvalues of A as the main-diagonal entries of T . For k = 1, . . . , n− 1, the first
k columns of S span an invariant subspace. The eigenvectors of an upper-triangular matrix
are easily computed by back substitution, and the eigenvectors of A can be deduced from
the eigenvectors of T [GV13, Chap. 7.6], [Wat07, Chap. 4.8], [Wat10, Chap. 5.7]. If a matrix
A is very large and sparse, only a partial similarity transformation is possible because a
complete similarity transformation would require too much memory and take too long to
compute.

56.1 The Generalized Eigenvalue Problem

Many matrix eigenvalue problems are most naturally viewed as generalized eigenvalue prob-
lems.

Definitions:

Given A ∈ Cn×n and B ∈ Cn×n, the nonzero vector v ∈ Cn is called an eigenvector of the pair
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(A,B) if there are scalars µ, ν ∈ C, not both zero, such that

νAv = µBv.

Then, the scalar λ = µ/ν is called the eigenvalue of (A,B) associated with the eigenvector v. If

ν = 0, then the eigenvalue is ∞ by convention.

The expression A− λB, with indeterminate λ, is called a matrix pencil. Whether we refer to

the pencil A− λB or the pair (A,B), we are speaking of the same object. The pencil (or the pair

(A,B)) is called singular if A− λB is singular for all λ ∈ C. The pencil is regular if there exists

a λ ∈ C such that A− λB is nonsingular. We will restrict our attention to regular pencils.

The characteristic polynomial of the pencil A− λB is det(λB −A), and the characteristic

equation is det(λB −A) = 0.

Two pairs (A,B) and (C,D) are strictly equivalent if there exist nonsingular matrices S1 and

S2 such that C − λD = S1(A− λB)S2 for all λ ∈ C. If S1 and S2 can be taken to be unitary, then

the pairs are strictly unitarily equivalent.

A pair (A,B) is called upper triangular if both A and B are upper triangular.

Facts:

The following facts are discussed in [GV13, Chap. 7.7], [Wat07, Chap. 6.1], and [Wat10,
Chap. 7.4].

1. When B = I, the generalized eigenvalue problem for the pair (A,B) reduces to the
standard eigenvalue problem for the matrix A.

2. λ is an eigenvalue of (A,B) if and only if A− λB is singular.
3. λ is an eigenvalue of (A,B) if and only if ker(λB −A) 6= {0}.
4. The eigenvalues of (A,B) are exactly the solutions of the characteristic equation

det(λB −A) = 0.
5. The characteristic polynomial det(λB −A) is a polynomial in λ of degree ≤ n.
6. The pair (A,B) (or the pencil A− λB) is singular if and only if det(λB −A) = 0 for

all λ.
7. If the pair (A,B) is regular, then det(λB − A) is a nonzero polynomial of degree
k ≤ n. (A,B) has k finite eigenvalues.

8. The degree of det(λB −A) is exactly n if and only if B is nonsingular.
9. If B is nonsingular, then the eigenvalues of (A,B) are exactly the eigenvalues of the

matrices AB−1 and B−1A.
10. If λ 6= 0, then λ is an eigenvalue of (A,B) if and only if λ−1 is an eigenvalue of (B,A).
11. Zero is an eigenvalue of (A,B) if and only if A is a singular matrix.
12. Infinity is an eigenvalue of (A,B) if and only if B is a singular matrix.
13. Two pairs that are strictly equivalent have the same eigenvalues.
14. If C − λD = S1(A− λB)S2, then v is an eigenvector of (A,B) if and only if S−12 v is

an eigenvector of (C,D).
15. (Schur’s Theorem) Every A ∈ Cn×n is unitarily similar to an upper-triangular matrix

S.
16. (Generalized Schur Theorem) Every pair (A,B) is strictly unitarily equivalent to an

upper triangular pair (S, T ).

17. The characteristic polynomial of an upper triangular pair (S, T ) is

n∏
k=1

(λtkk − skk).

The eigenvalues of (S, T ) are λk = skk/tkk, k = 1, . . . , n. If tkk = 0 and skk 6= 0,
then λk =∞. If tkk = 0 and skk = 0 for some k, the pair (S, T ) is singular.
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Examples:

1. Let A =

[
1 2

3 4

]
and B =

[
1 2

0 1

]
. Then the characteristic equation of the pair (A,B) is

λ2 + λ− 2 = 0, and the eigenvalues are 1 and −2.

2. Since the pencil [
2 5

0 7

]
− λ

[
5 1

0 3

]
is upper triangular, its characteristic polynomial is (5λ− 2)(3λ− 7), and its eigenvalues are

2/5 and 7/3.

3. The pencil [
0 0

0 1

]
− λ

[
1 0

0 0

]
has characteristic equation λ = 0. It is a regular pencil with eigenvalues 0 and ∞.

56.2 Dense Matrix Techniques

The steps that are usually followed for solving the unsymmetric eigenvalue problem are
preprocessing, eigenvalue computation with Francis’s implicitly shifted QR algorithm, and
eigenvector computation. The characteristic equation, which is important in theory, plays
no role in practical eigenvalue computations.

The most widely used public domain software for this problem is from LAPACK [ABB99]
and Chapter 93. Versions in FORTRAN and C are available. The most popular proprietary
software is MATLAB, which uses computational routines from LAPACK. Several of LA-
PACK’s computational routines will be mentioned in this section. LAPACK also has a
number of driver routines that call the computational routines to perform the most com-
mon tasks, thereby making the user’s job easier. A very easy way to use LAPACK routines
is to use MATLAB.

This section presents algorithms for the reader’s edification. However, the reader is
strongly advised to use well-tested software written by experts whenever possible, rather
than writing his or her own code. The actual software is very complex and addresses details
that cannot be discussed here.

Definitions:

A matrix A ∈ Cn×n is called upper Hessenberg if aij = 0 whenever i > j + 1. This means

that every entry below the first subdiagonal of A is zero. An upper Hessenberg matrix is called

unreduced upper Hessenberg if aj+1,j 6= 0 for j = 1, . . . , n− 1.

A matrix A ∈ Rn×n is called quasi-triangular if it is block upper triangular with 1 × 1 and

2× 2 blocks along the main diagonal.

Facts:

The following facts are proved in [Dem97], [GV13], [Kre05], [Wat07], or [Wat10].

1. Preprocessing is a two-step process involving balancing the matrix and transforming
by unitary similarity to upper Hessenberg form.

2. The first step, which is optional, is to balance the matrix. The balancing operation
begins by performing a permutation similarity transformation that exposes any obvi-
ous eigenvalues. The remaining submatrix is irreducible. It then performs a diagonal
similarity transformation D−1AD that attempts to make the norms of the ith row
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and ith column as nearly equal as possible, i = 1, . . . , n. This has the effect of reduc-
ing the overall norm of the matrix and in diminishing the effects of roundoff errors
[Osb60]. The scaling factors in D are taken to be powers of the base of floating point
arithmetic (usually 2). No roundoff errors are caused by this transformation.

3. All modern balancing routines, including the code GEBAL in LAPACK, are derived
from the code in Parlett and Reinsch [PR69]. See also [Kre05].

Algorithm 1: Balancing an Irreducible Matrix. An irreducible matrix A ∈
Cn×n is input. On output, A has been overwritten by D−1AD, where D is diagonal.

b← base of floating point arithmetic (usually 2)
D ← In
done← 0
while done = 0

done← 1
for j = 1 : n

c←
∑

i 6=j |aij |, r ←
∑

k 6=j |ajk|
s← c+ r, f ← 1
while b c < r[

c← b c, r ← r/b, f ← b f
while b r < c[

c← c/b, r ← b r, f ← f/b
if c+ r < 0.95 s[

done← 0, djj ← f djj
A1:n,j ← f A1:n,j , Aj,1:n ← (1/f)Aj,1:n

end

4. In most cases, balancing will have little effect on the outcome of the computation,
but sometimes it results in greatly improved accuracy [BDD00, Chap. 7.2].

5. The second preprocessing step is to transform the matrix to upper Hessenberg form.
This is accomplished by a sequence of n−2 steps. On the jth step, zeros are introduced
into the jth column.

6. For every x ∈ Cn there is a unitary matrix U such that Ux = αe1, for some scalar
α ∈ C, where e1 is the vector having a 1 in the first position and zeros elsewhere. U
can be chosen to be a rank-one modification of the identity matrix: U = I +uv∗. See
Section 51.5 for a discussion of Householder and Givens matrices.

7.

Algorithm 2: Unitary Similarity Transformation to Upper Hessenberg
Form. A general matrix A ∈ Cn×n is input. On output, A has been overwritten by
an upper Hessenberg matrix Q∗AQ. The unitary transforming matrix Q has also
been generated.

Q← In
for j = 1 : n− 2

Let x = Aj+1:n,j ∈ Cn−j .
Build unitary U ∈ Cn−j×n−j such that U∗x = γe1.
Aj+1:n,j:n ← U∗Aj+1:n,j:n

A1:n,j+1:n ← A1:n,j+1:nU
Q1:n,j+1:n ← Q1:n,j+1:nU

end
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8. The cost of the reduction to Hessenberg form is proportional to n3 for large n; that
is, it is O(n3).

9. Once the matrix is in upper Hessenberg form, if any of the subdiagonal entries aj+1,j

is zero, the matrix is block upper triangular with a j × j block and an n− j × n− j
block, and the eigenvalue problem decouples to two independent problems of smaller
size. Thus, we always work with unreduced upper Hessenberg matrices.

10. In practice we set an entry aj+1,j to zero whenever

|aj+1,j | < ε(|ajj |+ |aj+1,j+1|),

where ε is the computer’s unit roundoff.
11. If T ∈ Cn×n is upper triangular and nonsingular, then T−1 is upper triangular. If

H ∈ Cn×n is upper Hessenberg, then TH, HT , and THT−1 are upper Hessenberg.
12. The standard method for computing the eigenvalues of a Hessenberg matrix is Fran-

cis’s implicitly shifted QR algorithm [Fra61], [Wat11], an iterative method that pro-
duces a sequence of unitarily similar matrices that converges to upper triangular
form.

13. The most basic (unshifted) version of the QR algorithm starts with A0 = A, an
unreduced upper Hessenberg matrix, and generates a sequence (Am) as follows: Given
Am−1, a decomposition Am−1 = QmRm, where Qm is unitary and Rm is upper
triangular, is computed. Then the factors are multiplied back together in reverse
order to yield Am = RmQm. Equivalently, Am = Q∗mAm−1Qm.

14. Upper Hessenberg form is preserved by iterations of the QR algorithm.
15. The QR algorithm can also be applied to non-Hessenberg matrices, but the operations

are much more economical in the Hessenberg case.
16. The basic QR algorithm converges slowly, so shifts of origin are used to accelerate

convergence:

Am−1 − µmI = QmRm, RmQm + µmI = Q∗mAm−1Qm = Am,

where µm ∈ C is a shift chosen to approximate an eigenvalue.
17. Often it is convenient to take several steps at once:

Algorithm 3: Explicit QR iteration of degree k.

Choose k shifts µ1, . . .µk.
Let p(A) = (A− µ1I)(A− µ2I) · · · (A− µkI).
Compute a QR decomposition p(A) = QR.
A← Q∗AQ

18. A QR iteration of degree k is equivalent to k iterations of degree 1 with shifts µ1, . . . ,
µk applied in succession in any order [Wat07]. Upper Hessenberg form is preserved.
In practice, k is never taken very big; typical values are 1, 2, 4, and 6.

19. One important application of multiple steps is to complex shifts applied to real ma-
trices. Complex arithmetic is avoided by taking k = 2 and shifts related by µ2 = µ1.

20. The usual choice of k shifts is the set of eigenvalues of the lower right hand k × k
submatrix of the current iterate. With this choice of shifts at each iteration, the
entry an−k+1,n−k typically converges to zero quadratically [WE91], isolating a k × k
submatrix after only a few iterations. However, convergence is not guaranteed, and
failures do occasionally occur. No shifting strategy that guarantees convergence in
all cases is known. For discussions of shifting strategies and convergence see [Wat07],
[Wat10], or [WE91].
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21. After each iteration, all of the subdiagonal entries should be checked to see if any of
them can be set to zero. The objective is to break the big problem into many small
problems in as few iterations as possible. Once a submatrix of size 1 × 1 has been
isolated, an eigenvalue has been found. The eigenvalues of a 2× 2 submatrix can be
found by careful use of the quadratic formula. Complex conjugate eigenvalues of real
matrices are extracted in pairs.

22. The explicit QR iteration shown above is expensive and never used in practice. In-
stead, the iteration is performed implicitly.

Algorithm 4: Francis Implicit QR iteration of degree k
(chasing the bulge).

Choose k shifts µ1, . . .µk.
x← e1 % first column of identity matrix
for j = 1 : k[

x← (A− µkI)x
end % x is the first column of p(A).
x̂← x1:k+1 % xk+2:n = 0
Let U ∈ Ck+1×k+1 be unitary with U∗x = αe1
A1:k+1,1:n ← U∗A1:k+1,1:n

A1:n,1:k+1 ← A1:n,1:k+1U
Return A to upper Hessenberg form as in Algorithm 2 (Fact 7).

23. The initial transformation in the implicit QR iteration disturbs the upper Hessenberg
form of A, making a bulge in the upper left-hand corner. The size of the bulge is equal
to k. In the case k = 2, the pattern of nonzeros is

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗

 .

The subsequent reduction to Hessenberg form chases the bulge down through the
matrix and off the bottom. The equivalence of the explicit and implicit QR iterations
is demonstrated in [GV13, Chap. 7.5] and [Wat07, Chap. 4.5]. For this result it is
crucial that the matrix is unreduced upper Hessenberg

24. For a fixed small value of k, the implicit QR iteration requires only O(n2) work. Typ-
ically only a small number of iterations, independent of n, are needed per eigenvalue
found; the total number of iterations is O(n). Thus, the implicit QR algorithm is
considered to be an O(n3) process.

25. The main unsymmetric QR routine in LAPACK is HSEQR, which chases bulges of
degree k = 2. For efficient cache use, many bulges are chased in tight succession, and
the transforming matrices are aggregated [BBM02a]. The technique of aggressive early
deflation [BBM02b] is used to decrease the total number of iterations. For processing
small submatrices, HSEQR calls LAHQR, a standard implicitly shifted QR code with
k = 2.

26. If eigenvectors are wanted, the aggregate similarity transformation matrix S, the
product of all transformations from start to finish, must be accumulated. T = S−1AS,
where A is the original matrix and T is the final upper triangular matrix. In the
real case, T will not quite be upper triangular. It is quasi-triangular with a 2 ×



Unsymmetric Matrix Eigenvalue Techniques 56-7

2 block along the main diagonal for each complex conjugate pair of eigenvalues.
This complicates the descriptions of the algorithms but does not cause any practical
problems.

27. The eigenvectors of T are computed by back substitution [Wat10, Chap. 5.7]. For
each eigenvector x of T , Sx is an eigenvector of A. The total additional cost of the
eigenvector computation is O(n3). In LAPACK these tasks are performed by the
routines HSEQR and TREVC.

28. Invariant subspaces can also be computed. The eigenvalues of A are λ1 = t11, . . . ,
λn = tnn. If λ1, . . . , λk are disjoint from λk+1, . . . , λn, then because T is up-
per triangular, the first k columns of S span the invariant subspace associated with
{λ1, . . . , λk}.

29. If an invariant subspace associated with k eigenvalues that are not at the top of T is
wanted, then those k eigenvalues must be moved to the top by a sequence of swapping
operations. Each operation is a unitary similarity transformation that reverses the
positions of two adjacent main-diagonal entries of T . The transformations are applied
to S as well. Once the desired eigenvalues have been moved to the top, the first
k columns of the transformed S span the desired invariant subspace. For details see
[BD93] and [GV13, Chap. 7.6]. In LAPACK these tasks are performed by the routines
TREXC and TRSEN.

30. An important difference between the symmetric and unsymmetric eigenvalue prob-
lems is that in the unsymmetric case, the eigenvalues can be ill conditioned. That is,
a small perturbation in the entries of A can cause a large change in the eigenvalues.
Suppose λ is an eigenvalue of A of algebraic multiplicity 1, and let E be a pertur-
bation that is small in the sense that ‖E‖2 � ‖A‖2. Then A + E has an eigenvalue
λ+ δ near λ. A condition number for λ is the smallest number κ such that

|δ| ≤ κ‖E‖2

for all small perturbations E. If x and y are eigenvectors of A and AT , respectively,
associated with λ, then [Wat10, Chap. 7.1]

κ ≈ ‖x‖2 ‖y‖2
|yTx|

.

If κ� 1, λ is ill conditioned. If κ is not much bigger than 1, λ is well conditioned.
31. Condition numbers can also be defined for eigenvectors and invariant subspaces

[GV13, Chap. 7.2], [Wat07, Chap. 2.7], [Wat10, Chap. 7.1]. Eigenvectors associated
with a tight cluster of eigenvalues are always ill conditioned. A more meaningful ob-
ject is the invariant subspace associated with all of the eigenvalues in the cluster.
This space will usually be well conditioned, even though the eigenvectors are ill con-
ditioned. The LAPACK routines TRSNA and TRSEN compute condition numbers
for eigenvalues, eigenvectors, and invariant subspaces.

32. The invariant subspace associated with {λ1, . . . , λk} will certainly be ill conditioned if
any of the eigenvalues λk+1, . . . , λn are close to any of λ1, . . . , λk. A necessary (but
not sufficient) condition for well conditioning is that λ1, . . . , λk be well separated
from λk+1, . . . , λn. A related practical fact is that if two eigenvalues are very close
together, it may not be possible to swap them stably by LAPACK’s TREXC.

33. (Performance) A computer with an AMD Athlon dual-core processor running at 2.3
GHz with 2 GB main memory and 1 MB cache computed the complete eigensystem
of a random 2000 × 2000 real matrix using MATLAB in 49 seconds. This included
balancing, reduction to upper Hessenberg form, triangularization by the implicitly
shifted QR algorithm, and back solving for the eigenvectors. All computed eigenpairs
(λ,v) satisfied ‖Av − λv‖1 < 10−15‖A‖1‖v‖1.
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34. (Performance, continued) A parallel version of the algorithm was used on 1024 cores
of a parallel supercomputer to compute the Schur decomposition of a dense random
matrix of dimension 105 in just under nine hours [GKK10].

35. (Generalized eigenvalue problem) The steps for solving the dense, unsymmetric, gen-
eralized eigenvalue problem Av = λBv are analogous to those for solving the standard
problem. First (optionally) the pair (A,B) is balanced (by routine GGBAL in LA-
PACK). Then it is transformed by a strictly unitary equivalence to a condensed form
in which A is upper Hessenberg and B is upper triangular. Then the QZ algorithm, a
variant of Francis’s algorithm, completes the reduction to triangular form. Details are
given in [GV13, Chap. 7.7], [Wat07, Chap. 6], and [Wat10, Chap. 7.4]. In LAPACK
the codes GGHRD and HGEQZ reduce the pair to Hessenberg-triangular form and
perform the QZ iterations, respectively.

36. Once A has been reduced to triangular form, the eigenvalues are λj = ajj/bjj , j =
1, . . . , n. The eigenvectors can be obtained by routines analogous to those used for the
standard problem (LAPACK codes TGEVC and GGBAK), and condition numbers
can be computed (LAPACK codes TGSNA and TGSEN).

Examples:

1. The matrix

A =


−5.5849× 10−01 −2.4075× 10+07 −6.1644× 10+14 6.6275× 10+00

−7.1724× 10−09 −2.1248× 10+00 −3.6183× 10+06 2.6435× 10−06

−4.1508× 10−16 −2.1647× 10−07 1.6229× 10−01 −7.6315× 10−14

4.3648× 10−03 1.2614× 10+06 −1.1986× 10+13 −6.2002× 10−01


was balanced by Algorithm 1 (Fact 3) to produce

B =


−0.5585 −0.3587 −1.0950 0.1036

−0.4813 −2.1248 −0.4313 2.7719

−0.2337 −1.8158 0.1623 −0.6713

0.2793 1.2029 −1.3627 −0.6200

 .
2. The matrix B of Example 1 was reduced to upper Hessenberg form by Algorithm 2 (Fact 7)

to yield

H =


−0.5585 0.7579 0.0908 −0.8694

0.6036 −3.2560 −0.0825 −1.8020

0 0.9777 1.2826 −0.8298

0 0 −1.5266 −0.6091

 .
3. Algorithm 4 (Fact 22) was applied to the matrix H of Example 2 with k = 1 and shift

µ1 = h44 = −0.6091 to produce
−3.1238−0.5257 1.0335 1.6798

−1.3769 0.3051−1.5283 0.1296

0 −1.4041 0.3261−1.0462

0 0 −0.0473−0.6484

 .
The process was repeated twice again (with µ1 = h44) to yield

−3.1219 0.7193 1.2718 −1.4630

0.8637 1.8018 0.0868 −0.3916

0 0.6770 −1.2385 1.1642

0 0 −0.0036 −0.5824
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and 
−3.0939 −0.6040 1.3771 1.2656

−0.8305 1.8532 −0.3517 0.5050

0 0.2000 −1.3114 −1.3478

0 0 0.00003 −0.5888

 .
The (4,4) entry is an eigenvalue of A correct to four decimal places.

This matrix happens to have a real eigenvalue. If it had not, Algorithm 4 could have been

used with k = 2 to extract the complex eigenvalues in pairs.

4. For an example of an ill-conditioned eigenvalue (Fact 30) consider a matrix

A =

[
1 t

0 1 + ε

]
,

where t is large or ε is small or both. Since A is upper triangular, its eigenvalues are 1 and

1 + ε. Eigenvectors of A and AT associated with the eigenvalue 1 are

x =

[
1

0

]
and y =

[
1

−t/ε

]
,

respectively. Since ‖x‖2 = 1, ‖y‖2 =
√

1 + t2/ε2, and |yTx| = 1, the condition number of

eigenvalue λ = 1 is κ =
√

1 + t2/ε2 ≈ t/ε. Thus if, for example, t = 107 and ε = 10−7, we

have κ ≈ 1014.

5. This example illustrates Fact 31 on the ill conditioning of eigenvectors associated with a

tight cluster of eigenvalues. Given a positive number ε that is as small as you please, the

matrices

A1 =

2 + ε 0 0

0 2− ε 0

0 0 1


and

A2 =

 2 ε 0

ε 2 0

0 0 1


both have eigenvalues 1, 2+ε, and 2−ε, and they are very close together: ‖A1−A2‖2 =

√
2ε.

However, unit eigenvectors associated with clustered eigenvalues 2 + ε and 2− ε for A1 are

e1 =

1

0

0

 and e2 =

0

1

0

 ,
while unit eigenvectors for A2 are

1√
2

1

1

0

 and
1√
2

 1

−1

0

 .
Thus, the tiny perturbation of order ε from A1 to A2 changes the eigenvectors completely;

the eigenvectors are ill conditioned. In contrast, the two-dimensional invariant subspace

associated with the cluster 2 + ε, 2 − ε is Span(e1, e2) for both A1 and A2, and it is well

conditioned.
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56.3 Sparse Matrix Techniques

If the matrix A is large and sparse, and just a few eigenvalues are needed, sparse matrix
techniques are appropriate. Some examples of common tasks are (1) find the few eigen-
values of largest modulus, (2) find the few eigenvalues with largest real part, and (3) find
the few eigenvalues nearest some target value τ . The corresponding eigenvectors might also
be wanted. These tasks are normally accomplished by computing the low-dimensional in-
variant subspace associated with the desired eigenvalues. Then the information about the
eigenvalues and eigenvectors is extracted from the invariant subspace.

The most widely used method for the sparse unsymmetric eigenvalue problem is the im-
plicitly restarted Arnoldi method, as implemented in ARPACK [LSY98], which is discussed
in Chapter 94. MATLAB’s sparse eigenvalue command “eigs” calls ARPACK. An important
variant is the Krylov-Schur algorithm of Stewart [Ste01].

Definitions:

Given a subspace S of Cn, a vector v ∈ S is called a Ritz vector of A from S if there is a θ ∈ C
such that Av−θv ⊥ S. The scalar θ is the Ritz value associated with S. The pair (θ,v) is a Ritz

pair.

Facts:

1. [Wat10, Chap. 6.1] Let v1, . . . , vm be a basis for a subspace S of Cn, and let V =
[v1 · · ·vm]. Then S is invariant under A if and only if there is a B ∈ Cm×m such
that AV = V B.

2. [Wat10, Chap. 6.1] If AV = V B, then the eigenvalues of B are eigenvalues of A. If x
is an eigenvector of B associated with eigenvalue µ, then V x is an eigenvector of A
associated with µ.

3. [Wat10, Chap. 6.6] Let v1, . . . , vm be an orthonormal basis of S, V = [v1 · · ·vm], and
B = V ∗AV . Then the Ritz values of A associated with S are exactly the eigenvalues
of B. If (θ,x) is an eigenpair of B, then (θ, V x) is a Ritz pair of A, and conversely.

4. If A is very large and sparse, it is essential to store A in a sparse data structure,
in which only the nonzero entries of A are stored. One simple structure stores two
integers n and nnz, which represent the dimension of the matrix and the number of
nonzeros in the matrix, respectively. The matrix entries are stored in an array ent of
length nnz, and the row and column indices are stored in two integer arrays of length
nnz called row and col, respectively. For example, if the nonzero entry aij is stored
in ent(m), then this is indicated by setting row(m) = i and col(m) = j. The space
needed to store a matrix in this data structure is proportional to nnz.

5. Many operations that are routinely applied to dense matrices are impossible if the
matrix is stored sparsely. Similarity transformations are out of the question because
they quickly turn the zeros to nonzeros, transforming the sparse matrix to a full
matrix.

6. One operation that is always possible is to multiply the matrix by a vector. This
requires one pass through the data structure, and the work is proportional to nnz.

Algorithm 5: Sparse Matrix-Vector Multiply.
Multiply A by x and store the result in y.

y← 0
for m = 1 : nnz[

y(row(m))← y(row(m)) + ent(m) ∗ x(col(m))
end

7. Because the matrix-vector multiply is so easy, many sparse matrix methods access
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the matrix A in only this way. At each step, A is multiplied by one or several vectors,
and this is the only way A is used.

8. The following standard methodology is widely used. A starting vector v1 is cho-
sen, and the algorithm adds one vector per step, so that after j − 1 steps it has
produced j orthonormal vectors v1, . . . , vj . Let Vj = [v1, . . . ,vj ] ∈ Cn×j , and let
Sj = Span(Vj) = Span(v1, . . . ,vj). The jth step uses information from Sj to produce
vj+1. The Ritz values of A associated with Sj are the eigenvalues of the j × j matrix
Bj = V ∗j AVj . The Ritz pair (θ,w) for which θ has the largest modulus is an estimate
of the largest eigenvalue of A, and x = Vjw is an estimate of the associated eigenvec-
tor. The residual rj = Ax− xθ gives an indication of the quality of the approximate
eigenpair.

9. Several methods use the residual rj to help decide on the next basis vector vj+1. These
methods typically use rj to determine another vector sj , which is then orthonormal-
ized against v1, . . . , vj to produce vj+1. The choice sj = rj leads to a method that
is equivalent to the Arnoldi process. However, Arnoldi’s process should not be imple-
mented this way in practice; see Chapter 57. The choice sj = (D − θI)−1rj , where
D is the diagonal part of A, gives Davidson’s method. The Jacobi-Davidson methods
have more elaborate ways of choosing sj . See [BDD00, Chap. 7.12] for details.

10. Periodic purging is employed to keep the dimension of the active subspace from
becoming too large. Given m vectors, the purging process keeps the most promising
k-dimensional subspace of Sm = Span(Vm) and discards the rest. Again, let Bm =
V ∗mAVm, and let Bm = UmTmU

∗
m be a unitary similarity transformation to upper

triangular form. The Ritz values lie on the main diagonal of Tm and can be placed
in any order. Place the k most promising Ritz values at the top. Let Ṽm = VmUm,
and let Ṽk denote the n × k submatrix of Ṽm consisting of the first k columns. The
columns of Ṽk are the vectors that are kept.

11. After each purge, the algorithm can be continued from step k. Once the basis has
been expanded back to m vectors, another purge can be carried out. After a number
of cycles of expansion and purging, the invariant subspace associated with the desired
eigenvalues will have been found.

12. When purging is carried out in connection with the Arnoldi process, it is called an
implicit restart, and there are some extra details. See Chapter 57, [Ste01], and [Wat07,
Chap. 9.3].

13. The Implicitly Restarted Arnoldi process is well suited for computing the eigenvalues
on the periphery of the spectrum of A. Thus, it is good for computing the eigenvalues
of maximum modulus or those of maximum or minimum real part.

14. For computing interior eigenvalues, the shift-and-invert strategy is often helpful. Sup-
pose the eigenvalues nearest some target value τ are sought. The matrix (A− τI)−1

has the same eigenvectors as A, but the eigenvalues are different. If λ1, . . . , λn are the
eigenvalues of A, then (λ1−τ)−1 . . . , (λn−τ)−1 are the eigenvalues of (A−τI)−1. The
eigenvalues of (A−τI)−1 of largest modulus correspond to the eigenvalues of A closest
to τ . These can be computed by applying the implicitly restarted Arnoldi process to
(A − τI)−1. This is feasible whenever operations of the type w ← (A − τI)−1x can
be performed efficiently. If a sparse decomposition A− τI = PLU can be computed,
as described in Chapters 51 and 53, then that decomposition can be used to perform
the operation w ← (A− τI)−1x by back solves. If the LU factors take up too much
space to fit into memory, this method cannot be used.

15. Another option for solving (A− τI)w = x is to use an iterative method, as described
in Chapter 54. However, this is very computationally intensive, as the systems must
be solved to high accuracy if the eigenvalues are to be computed accurately.

16. The shift-and-invert strategy can also be applied to the generalized eigenvalue prob-
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lem Av = λBv. The implicitly restarted Arnoldi process is applied to the operator
(A− τB)−1B to find eigenvalues near τ .

17. If the matrix is too large for the shift-and-invert strategy, Jacobi-Davidson methods
can be considered [BDD00, Chap. 7.12]. These also require the iterative solution of
linear systems. In this family of methods, inaccurate solution of the linear systems
may slow convergence of the algorithm, but it will not cause the eigenvalues to be
computed inaccurately.

18. Arnoldi-based and Jacobi-Davidson algorithms are described in [BDD00]. A brief
overview is given in [Wat10, Chap. 6]. Balancing of sparse matrices is discussed in
[BDD00, Chap. 7.2].
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